Monitoring Technique

VARIMETER
Voltage Relay
MK 9054N
Translation of the original instructions

Product Description

The voltage relay MK 9054N of the VARIMETER series monitors single phase DC or AC voltage systems. The adjustment is made via potentiometers on the front of the device. Early recognition and preventive maintenance avoid interruptions of electrical plants and provides a higher operational and plant safety.

Circuit Diagrams

MK 9054N

MK 9054N/1_

Connection Terminals
Terminal designation Signal description A1, A2 Auxiliary voltage e, f Voltage measuring input $11,12,14$ 1st changeover contact $21,22,24$ 2nd changeover contact Z1, Z2, Z3 Remote potentiometer for response value

Safety Notes

Please observe when connecting a remote potentiometer to MK 9054N/1_ Measuring circuit and remote potentiometer not galvanically separated. The remote potentiometer on terminals $\mathrm{Z} 1, \mathrm{Z} 2, \mathrm{Z} 3$ is related to terminal "e". Therefore "e" should be connected to " N ",
"-" or GND, so that the remote potentiometer is not connected to the Phase voltage. The remote potentiometer has to be connected volt- and ground-free.

Your Advantages

- Protection against defect by overvoltage
- Preventive maintenance
- For better productivity
- Quicker fault locating
- Precise and reliable

Features

- According to IEC/EN 60255-1, IEC/EN 60947-1
- To: Monitor DC and AC
- With measuring ranges from 15 mV to 500 V
- High overload possible
- Input frequency up to 5 kHz
- Galvanic separation between auxiliary circuit - measuring ciruit
- Optionally with start-up delay
- With time delay, up to max. 100 sec
- Optionally with remote potentiometer
- As option with manual reset
- Option with fixed settings possible
- LED indicators for operation and contact position
- As option with pluggable terminal blocks for easy exchange of devices
- With screw terminals
- Or with cage clamp terminals
- Width 22.5 mm

Approvals and Markings

${ }^{1)}$ Approval not for all variants

Applications

- Monitoring voltage in AC or DC systems
- For industrial applications

Function

The relays measure the arithmetic mean value of the rectified measuring voltage. The AC units are adjusted to the r.m.s value. They have settings for response value and hysteresis. The units work as overvoltage relays but can also be used for undervoltage detection. The hysteresis is dependent on the response value.

2 time delays are possible in different variants:
The start up delay t_{a} operates only when connecting the auxiliary supply. The response delay t_{v} is active after exceeding a response value. On overvoltage relays the delay is active when the voltage goes over the tripping value, on undervoltage relays when the voltage drops below the hysteresis value.

Indicators

Green upper LED:
On, when auxiliary supply connected
Yellow lower LED:
On, when output relay acitvated

Function Diagram

At version MK 9054N/6__ with manual reset the contacts remain in the fault state after detecting a fault or after to has elapsed. The contacts are reset by disconnecting the supply voltage.

Technical Data

Input (e, f)

With 1 Measuring range for $A C$ and DC			
Measuring range ${ }^{1)}$		Internal	Max. permissible
AC	DC	resistance	contin. voltage
$6 \ldots 60 \mathrm{mV}^{3 / 4)}$	$5,4 \ldots 54 \mathrm{mV}^{3 / 4)}$	$20 \mathrm{k} \Omega$	10 V
$15 . . .150 \mathrm{mV}{ }^{\text {3) 4) }}$	$13.5 \ldots 135 \mathrm{mV}{ }^{3 / 4)}$	$40 \mathrm{k} \Omega$	100 V
$50 \ldots 500 \mathrm{mV}^{3)}$	$45 . .450 \mathrm{mV}^{3)}$	$270 \mathrm{k} \Omega$	250 V
$0.5 \ldots 5 \mathrm{~V}$	0.45 ... 4.5 V	$500 \mathrm{k} \Omega$	300 V
$1 . . .10 \mathrm{~V}$	0.9 ... 9.0 V	$1 \mathrm{M} \Omega$	300 V
$5 \ldots 50 \mathrm{~V}$	4.5 ... 45 V	$2 \mathrm{M} \Omega$	$500 \mathrm{~V}^{2)}$
$25 \ldots 250 \mathrm{~V}$	22.5 ... 225 V	$2 \mathrm{M} \Omega$	$500 \mathrm{~V}^{2)}$
$50 \ldots 500 \mathrm{~V}$	$45 . .450 \mathrm{~V}$	$2 \mathrm{M} \Omega$	$500 \mathrm{~V}^{2)}$

1) DC or AC voltage $50 \ldots 5000 \mathrm{~Hz}$
(Other frequency ranges of $10 \ldots 5000 \mathrm{~Hz}$, e.g. $16 \frac{2}{3} \mathrm{~Hz}$ on request)
${ }^{2)}$ Not suitable for 400 / 690 V-mains (systems)
${ }^{3)}$ To avoid measuring mistakes, twisted/shielded wires must always be used at the measuring input for device versions with an mV measuring range.
${ }^{4)}$ Only suitable for current measurment via shunt!

Measuring principle:

 Adjustment:Temperature influence:

Arithmetic mean value The AC-devices can also monitor DCvoltage. The scale offset in this case is ($\bar{U}=0.90 U_{\text {eff }}$)
$<0.05 \% / K^{\text {eff }}$

Setting Ranges

Setting

Response value:
Hysteresis
at AC:
At DC:

Accuracy:

Response value at
Potentiometer right stop (max): 0 ... + 8 \%
Potentiometer left stop (min): - $10 \ldots+8 \%$

Repeat accuracy

(constant parameter): $\leq \pm 0.5 \%$

Recovery time

at devices with manual reset
(Reset by braking
of the auxiliary voltage)
MK 9054N/6
Time delay t_{v} :

Start-up delay t_{a} :
≤ 1 s
(dependent to function and auxiliary voltage) Infinite variable at logarithmic scale from $0 \ldots 20 \mathrm{~s}, 0 \ldots 30 \mathrm{~s}, 0 \ldots 60 \mathrm{~s}, 0 \ldots 100 \mathrm{~s}$ setting $0 \mathrm{~s}=$ without time delay $0.1 \ldots 20 \mathrm{~s} ; 0.1 \ldots 60 \mathrm{~s} ; 0.1 \ldots 100 \mathrm{~s}$

Auxiliary voltage $\mathrm{U}_{\mathrm{H}}(\mathrm{A} 1, \mathrm{~A} 2)$

Nominal voltage	Voltage range	Frequency range
$\mathrm{AC} / \mathrm{DC} 24 \ldots 80 \mathrm{~V}$	$\mathrm{AC} 18 \ldots 100 \mathrm{~V}$	$45 \ldots 400 \mathrm{~Hz}$ DC $48 \% \mathrm{~W}$
	$\mathrm{DC} 18 \ldots 130 \mathrm{~V}$	$\mathrm{~W} \leq 5 \%$
$\mathrm{AC} / \mathrm{DC} 80 \ldots 230 \mathrm{~V}$	$\mathrm{AC} 40 \ldots 265 \mathrm{~V}$	$45 \ldots 400 \mathrm{~Hz} ; \mathrm{DC} 48 \% \mathrm{~W}$
	$\mathrm{DC} 40 \ldots 300 \mathrm{~V}$	$\mathrm{~W} \leq 5 \%$

Nominal consumption:

4 VA ; 1.5 W at AC 230 V Rel. energized 1 W at DC 80 V Rel. energized

Technical Data

Output

Contacts:
Thermal current $I_{\text {th }}$: Switching capacity
to AC 15:
To DC 13:
Electrical life
at $2 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V} \cos \varphi=1$:
Short-circuit strength
max. fuse rating:
Mechanical life:
General Data
Operating mode:
Temperature range: Operation:

Storage:
Altitude:
Clearance and creepage distances
rated impulse voltage /
pollution degree:
EMC
Electrostatic discharge:
HF irradiation
80 MHz ... 1 GHz :
$1 \mathrm{GHz} \ldots 2.7 \mathrm{GHz}$:
Fast transients:
Surge voltages
between
wires for power supply:
Between wire and ground:
HF wire guided
Interference suppression:
Degree of protection
Housing:
Terminals:
Housing:
Vibration resistance:
Climate resistance:
Terminal designation:
Wire connection
Screw terminals
(integrated):

Insulation of wires
or sleeve length:
Plug in with
screw terminals
max. cross section for connection:

Insulation of wires
or sleeve length:
Plug in with
cage clamp terminals
max. cross section for connection:

Min. cross section for connection: Insulation of wires or sleeve length:
Wire fixing:

Stripping length:
Fixing torque:
Mounting:
Weight:

2 changeover contacts 2×4 A
1.5 A / AC 230 V

IEC/EN 60947-5-1 1 A / DC 24 V

IEC/EN 60947-5-1
10^{5} switching cycles
6 A gG / gL IEC/EN 60947-5-1
20×10^{6} switching cycles
$1 \times 4 \mathrm{~mm}^{2}$ solid or
$1 \times 2.5 \mathrm{~mm}^{2}$ stranded ferruled (isolated)
$0.5 \mathrm{~mm}^{2}$
$12 \pm 0.5 \mathrm{~mm}$
Plus-minus terminal screws M3.5 box
terminals with wire protection or cage clamp terminals
10 mm
0.8 Nm

DIN-rail
IEC/EN 60715

CCC-Data
Thermal current I_{th} : 4 A
Switching capacity
to AC 15:
$1.5 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}$
IEC/EN 60947-5-1
To DC 13:
1 A / DC 24 V
IEC/EN 60947-5-1

Technical data that is not stated in the CCC-Data, can be found in the technical data section.

Standard Types

MK 9054N. $12 / 010$ AC $25 \ldots 250 \mathrm{~V}$ AC/DC $80 \ldots 230 \mathrm{~V}_{\mathrm{v}} 0 \ldots 20 \mathrm{~s} \mathrm{t}_{\mathrm{a}} 0.1 \ldots 20 \mathrm{~s}$ Article number: 0053714

- For Overvoltage monitoring
- Measuring range: AC $25 \ldots 250 \mathrm{~V}$
- Auxiliary voltage U_{H} : AC/DC $80 \ldots 230 \mathrm{~V}$
- Time delay t_{v} by U_{an} : $0 \ldots 20 \mathrm{~s}$
- Start up delay t_{a} : $0.1 \ldots 20 \mathrm{~s}$
- Width: 22.5 mm

Ordering Example

 gized on trip
11 Overvoltage relay de-energized on trip
12 Undervoltage relay de-energized on trip
13 Undervoltage relay energized on trip

0 Standard version without remote potentiometer
1 Standard version with remote potentiometer (resp. value)
Z1, Z2, Z3
for $470 \mathrm{k} \Omega$ at this version there is no potentiometer for the response value
6 General definition with manual reset function

Type of terminals
Without indication: terminal blocks fixed, with screw terminals
PC (plug in cage clamp): pluggable terminal blocks with cage clamp terminals
PS (plug in screw): pluggable terminal blocks with screw terminals

Dimensions

Options with Pluggable Terminal Blocks

Screw terminal
(PS/plugin screw)

Cage clamp (PC/plugin cage clamp)

Notes

Removing the terminal blocks with cage clamp terminals

1. The unit has to be disconnected.
2. Insert a screwdriver in the side recess of the front plate.
3. Turn the screwdriver to the right and left.
4. Please note that the terminal blocks have to be mounted on the belonging plug in terminations.

Accessories

AD 3:
Remote potentiometer 470 kW Article number: 0050174

Setting

Example:
Voltage relay AC 25 ... 250 V
AC according to type plate:
i.e. the unit is adjusted to AC voltage
$25 \ldots 250 \mathrm{~V}=$ measuring range
Response value AC 150 V
Hysteresis AC 75 V
Settings
upper potentiometer: $\quad 0.6 \quad(0.6 \times 250 \mathrm{~V}=150 \mathrm{~V})$
Lower potentiometer: $\quad 0.5 \quad(0.5 \times 150 \mathrm{~V}=75 \mathrm{~V})$
The AC-devices can also monitor DC voltage. The scale offset in this case is: $\bar{U}=0.9 \times U_{\text {eff. }}$

AC $25 \ldots 250 \mathrm{~V}$ is equivalent to $\mathrm{DC} 22.5 \ldots 225 \mathrm{~V}$
Response value DC 150 V
Hysteresis DC 75 V
Settings

upper potentiometer:	0.66	$(0.66 \times 225 \mathrm{~V}=150 \mathrm{~V})$
Lower potentiometer:	0.5	$(0.5 \times 150 \mathrm{~V}=75 \mathrm{~V})$

Characteristic

t [ms]

Time delay of measuring circuit
X on: Measured value rises $F=\frac{\text { Meas. value (after rise of meas. value) }}{\text { Setting value }}$
X off: Measured value drops $F=\frac{\text { Meas. value (befor meas. value drops) }}{\text { Setting value (hysteresis) }}$
The diagram shows the typical delay of a standard devices depending on the measured values " X on and X off" at sudden rise or drop of the signal. At slow change of the measured value the delay is shorter.
The total reaction time of the device results from the adjustable delay t_{v} and the delay created by the measuring circuit.

The diagram shows an average delay. The delay times could differ on the different variants.

Example for "X on" (overvoltage detection with MK 9054N/010):

Adjusted setting value X on $=230 \mathrm{~V}$.
Caused by a missing neutral the voltage rises suddenly to 400 V

$$
F=\frac{\text { Measured value (after rise of meas. value) }}{\text { Setting value }}=\frac{400 \mathrm{~V}}{230 \mathrm{~V}}=1.74
$$

Reading from the diagram:
The output relay switches on after 64 ms at a setting $\mathrm{t}_{\mathrm{v}}=0$.

Example for "X off" (undervoltage detection with MK 9054N/012): Adjusted hysteresis setting value is 100 V .
Caused by a broken wire the voltage drops suddenly from 230 V to 0 V .
$F=\frac{\text { Measured value (befor meas. value drops) }}{\text { Setting value (hysteresis) }}=\frac{230 \mathrm{~V}}{100 \mathrm{~V}}=2.3$
Reading from the diagram:
The output relay switches off after 70 ms at a setting $\mathrm{t}_{\mathrm{v}}=0$.

