Translation of the original instructions

DOLD

Your Advantages

- Preventive maintenance
- For better productivity
- Quicker fault locating
- Precise and reliable
- Min-, Max. value or window monitoring
- Measuring range up to AC/DC 600 V
- Large measuring ranges
- Simple configuration and fault diagnostic
- Auxiliary voltage ranges DC $24 \mathrm{~V}, \mathrm{AC} 230 \mathrm{~V}, \mathrm{AC} / \mathrm{DC} 24 \ldots 230 \mathrm{~V}$ or AC/DC 110 ... 400 V

Features

- According to IEC/EN 60255-1
- AC/DC voltage measuring (single-phase)
- Start up delay, on delay
- Manual reset
- LCD for indication of the measuring values
- Relay output MK 9064N: 1 changeover contact MH 9064: 2×1 changeover contacts
- Relay function selectable (energized/de-energized on trip)
- As option with plugable terminal blocks for easy exchange of devices - With screw terminals
- Or with cage clamp terminals
- Width MK 9064N: 22.5 mm
- Width MH 9064: 45.0 mm

More Information

- MH 9064

The MH 9064 has 2 relay outputs.
The voltage monitoring can be assigned ro relay 1 and /or relay 2

Approvals and Markings

C ϵ

Applications

- Voltage monitoring AC/DC single-phase
- Voltage dependent switching at under- or overvoltage

Connection Terminals
Terminal designation
A1(+), A2
e(+), f
$11,12,14$
$21,22,24$

[^0]MH 9064.12

Function

The Device is programmable for AC- or DC- measuring.
On AC-measurement the rectified mean value is measured.
On sinusoidal input signals the RMS value is displayed.
After connecting the auxiliary supply to terminals A1-A2 the startup delay disables the monitoring function so that changes on the input have no influence on the relay output of the VARIMETER.
The device is in display (RUN) mode and continuously measures the actual values. Pressing Esc for more than 3 sec starts the input mode.

If the setting value is exceeded the relay switches and the display indicates this state. The display is inverted, flashes and shows the error.

The fault memory is selectable
With button the fault memory can be deleted.
On the unit MH 9064it is possible to assign different functions to the different relays so one can be used as pre-warning and the other as alarm output. Relay output 1 switches when actual value exceeds the prewarning setting. If a second setting assigned to relay output 2 the unit gives an Alarm signal.

Functional Notes

The unit needs a connected auxiliary supply.
It is designed for single phase AC/DC measurement.

Indicators

The LED indicate the state.

Green:	On, when auxiliary voltage present
Orange (flashes):	No measurement; unit in input mode
Red (short On, short Off):	Failure overvoltage

If the measured value is higher then the upper end of scale value, the display shows the fault message "OL"

Operating

Display (Run) - Mode

Input-Mode

(UP / DOWN

After power up the relay is in display (Run) mode.
(\downarrow Buttons have no function

The measurement is interrupted, the relays are in failure state and the indicator LED has orange color
(1) Selection of parameters and setting of thresholds

ENTER

Manual reset, when manual reset is selected for output relay Reset works only when fault is removed

Shifts cursor to the right

- Saves the value no-voltage safe
- Pressing for more than 3 sec : Change to display (Run) mode.

Esc) Esc				
- Pressing for more than 3 sec : Change to input mode				- Shifts cursor to the left - Leave setting without saving
LCD-Display				

Setting Parameter

$<\mathrm{U} \quad$ Fault, when value drops under set point
> U Fault, when value exceeds set point
OFF Measurement disabled

If the adjusted threshold of at least one measuring function is exceeded, the corresponding relay output switches after the selected time delay tv and the fault is indicated on the display.
Manual reset can be activated or de-activated and is operated withon the unit.

Adjustable Parameter

Limit values for Rel. 1 and Rel. 2
Selectable with buttons (1)

Name	Description	Value range	Step size	Factory setting*
$<\mathrm{U}$	Response value undervoltage (Undervoltage relay) Measuring ranges AC/DC $6 \ldots 150 \mathrm{mV}$: Measuring ranges AC/DC $0.2 \ldots 5 \mathrm{~V}$: Measuring ranges AC/DC $5 \ldots 80 \mathrm{~V}$: Measuring ranges AC/DC $12 \ldots 300 \mathrm{~V}$: Measuring ranges AC/DC $24 \ldots 600 \mathrm{~V}$:	$\begin{gathered} \text { OFF, } 0 \ldots 150 \mathrm{mV} \\ \text { OFF, } 0 \ldots 5 \mathrm{~V} \\ \text { OFF, } 0 \ldots 80 \mathrm{~V} \\ \text { OFF, } 0 \ldots 300 \mathrm{~V} \\ \text { OFF, } 0 \ldots 600 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0.1 \mathrm{mV} \\ 0.01 \mathrm{~V} \\ 0.1 \mathrm{~V} \\ 1 \mathrm{~V} \\ 1 \mathrm{~V} \end{gathered}$	OFF OFF OFF OFF OFF
>U	Response value overvoltage (Overvoltage relay) Measuring ranges AC/DC $6 \ldots 150 \mathrm{mV}$: Measuring ranges AC/DC $0.2 \ldots 5 \mathrm{~V}$: Measuring ranges AC/DC $5 \ldots 80 \mathrm{~V}$: Measuring ranges AC/DC $12 \ldots 300 \mathrm{~V}$: Measuring ranges AC/DC $24 \ldots 600 \mathrm{~V}$:	$\begin{gathered} \text { OFF, } 0 \ldots 150 \mathrm{mV} \\ \text { OFF, } 0 \ldots 5 \mathrm{~V} \\ \text { OFF, } 0 \ldots 80 \mathrm{~V} \\ \text { OFF, } 0 \ldots 300 \mathrm{~V} \\ \text { OFF, } 0 \ldots 600 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0.1 \mathrm{mV} \\ 0.01 \mathrm{~V} \\ 0.1 \mathrm{~V} \\ 1 \mathrm{~V} \\ 1 \mathrm{~V} \end{gathered}$	$\begin{gathered} 150 \mathrm{mV} \\ 5 \mathrm{~V} \\ 80 \mathrm{~V} \\ 265 \mathrm{~V} \\ 440 \mathrm{~V} \end{gathered}$
Hyst	Hysteresis of response value	2-50\%	1.0 \%	5.0 \%
tv	On delay for relays	0-10 s	0.1 s	0 s
A / R	Setting open- / closed circuit operation	$\begin{aligned} & \mathrm{A} \\ & \mathrm{R} \end{aligned}$	-	R
Sp	Error storage	$\begin{aligned} & \text { ON } \\ & \text { OFF } \end{aligned}$	-	OFF

* applies to Rel. 1 and Rel. 2

Further Setting Parameter

Name	Description	Value range	Step size	Factory setting
t_{a}	Start up delay, when auxiliary voltage connected	$0.2-10 \mathrm{~s}$	0.1 s	
AC/DC	Measuring voltage AC or DC	AC	-	DC
		AC		

Restore Factory Settings

(Restore factory settings)
Before auxiliary voltage connected press button Esc.
During start press and hold.

Indicator output

The switching mode energized or de-energized on trip can be set in input mode. The MH 9064 has 2 relay outputs. Monitoring function can be assigned to Relay 1 and/or to Relay 2.

After connecting the auxiliary supply A1/A2 the unit is in display (Run) mode:

The actual measured value is displayed continuously (AC or DC)
The display is inverted when a measured value is exceeds the settings.
With buttonthe fault memory is reset.

Pressing button Esc for more than 3 sec the unit changes to input mode.
In input mode the measurement is disabled, the relays are in failure mode and the indicator LED is orange.

With the buttons the different setting values can be chosen.
Move cursor position
(1) One character to the right
(Esc One character to the left

Back to the Display (Run)-Mode

Press button 3 s OK | New values stored |
| :--- |
| or |
| Press button Esc $3 \mathrm{~s} ; \quad$ Break Values unchanged |
| RUN on the display confirm with to change to display (Run) mode. | .

Display (Run) - Modus	Input-Mode	
Display inverted when the actual value is in failure state.	Measurement interrupted, relays are in failure state, indicator LED orange color	
No function	Chose Rel1, Rel2, Ta, AC/DC and RUN	
Reset fault memory:	Shose parameter	
		Shange and set response values for Rel1 and Rel2.

Technical Data

Auxiliary voltage A1/A2

Nominal auxiliary voltage U_{H}		
MK 9064N, MH 9064:	DC 24 V	$\left(0.9 \ldots 1.1 \times U_{H}\right)$
MH 9064:	AC 230 V	$\left(0.8 \ldots 1.1 \times U_{H}\right)$
	AC/DC $24 \ldots 230 \mathrm{~V}$	$\left(0.8 \ldots 1.1 \times U_{H}\right)$
	AC/DC $110 \ldots 400 \mathrm{~V}$	$\left(0.8 \ldots 1.1 \times U_{H}\right)$
Nominal frequency:	$50 / 60 \mathrm{~Hz}$	
Frequency range:	$45 \ldots 400 \mathrm{~Hz}$	
Input current		
at DC $24 \mathrm{~V}:$	50 mA	
At AC $230 \mathrm{~V}:$	15 mA	

Voltage Measuring Input L+/L
MK 9064N:

Nominal voltage:

Measuring range U_{M} :

MH 9064:
Nominal voltage:
Measuring range U_{m} :

Nominal frequency:
Frequency range:

AC/DC 150 mV ,
AC/DC 5, 80, 300 V
AC/DC 6 ... 150 mV,
AC/DC $0.2 \ldots 5,5 \ldots 80,12 \ldots 300 \mathrm{~V}$
(0.8 ... $1.1 \times \mathrm{U}_{\mathrm{M}}$)

AC/DC 150 mV ,
AC/DC 5, 80, 600 V
AC/DC 6 ... 150 mV ,
AC/DC $0.2 \ldots 5,5 \ldots 80,24 \ldots 600 \mathrm{~V}$
($0.8 \ldots 1.1 \times \mathrm{U}_{\mathrm{M}}$)
$50 / 60 \mathrm{~Hz}$
$10 \ldots 400 \mathrm{~Hz}$

Setting Range (absolute, via button and LCD-display)
Measuring accuracy
at nominal frequency
(in \% of setting value):
Hysteresis
(in \% of setting value):
Reaction time:
Adjustable on delay (t_{v}): $\quad 0 \ldots 10 \mathrm{~s}$ (in steps of 0.1 s)
Adjustable start up delay (t_{a}): $0.2 \ldots 10 \mathrm{~s}$ (in steps of 0.1 s)
Output Circuit (Rel1: 11/12/14; Rel2: 21/22/24)

Contacts:
MK 9064N:
MH 9064:
Thermal current $\mathrm{I}_{\text {th }}$:
Switching capacity
to AC 15
NO contacts:
NC contacts:
To DC 13
NO contacts:
NC contacts:
Electrical life
to AC 15 at 3 A, AC 230 V :
Permissible switching
frequency:
Short circuit strength
Max. fuse rating:
Mechanical life:
General Data
Nominal operating mode:
Temperature range
Operation:

Storage:
Altitude:

1 changeover contact
1 changeover contact (Rel1) and
1 changeover contact (Rel2)
2×4 A

3 A / AC 230 V IEC/EN 60947-5-1 1 A / AC 230 V IEC/EN 60947-5-1

1 A / DC 24 V IEC/EN 60947-5-1 1 A / DC 24 V IEC/EN 60947-5-1
2×10^{5} switch. cycl. IEC/EN 60947-5-1
1800 / h
$4 \mathrm{AgG} / \mathrm{gL}$
IEC/EN 60947-5-1
30×10^{6} switching cycles

Clearance and creepage distance
Overvoltage category:
Rated impulse voltage /
pollution degree:
Continuous operation

MK:
Aux. voltage / measuring input: $4 \mathrm{kV} / 2$
Aux. voltage / contacts: $6 \mathrm{kV} / 2$
Measuring input / contacts: 6 kV / 2
MH:
Aux. voltage / measuring input: $4 \mathrm{kV} / 2\left(\mathrm{U}_{\mathrm{H}}=\mathrm{DC} 24 \mathrm{~V}\right)$
Measuring voltage >300 :
Overvoltage category: II
Aux. voltage / measuring input: 6 kV / 2
Aux. voltage / contacts:
6 kV / 2
Measuring input / contacts: $\quad 6 \mathrm{kV} / 2$
Contacts 11,12,14 / 21,22,24: 4 kV / 2

Technical Data

EMC

Electrostatic discharge (ESD): 8 kV (air) IEC/EN 61000-4-2
HF irradiation
$80 \mathrm{MHz} \ldots 6.0 \mathrm{GHz}$:
$20 \mathrm{~V} / \mathrm{m}$
IEC/EN 61000-4-3
Damped oscillatory wave
immunity test
Differential mode voltage:
Common mode voltage:
Fast transients:
Surge voltage
between
wires for power supply:
Between wire and ground:
HF-wire guided:
Interference suppression:

Degree of protection

Housing:
Terminals:
Housing:
Vibration resistance:
Climate resistance:
Wire connection:
Screw terminal
(fixed):

Insulation of wires or sleeve length:
Terminal block
with screw terminals
Max. cross section:
Insulation of wires or
sleeve length:
Terminal block
with cage clamp terminals
Max. cross section:
Min. cross section: Insulation of wires or sleeve length:
Wire fixing:

Fixing torque:

Mounting:
Weight:
MK 9064N:
MH 9064:

Dimensions

Width x height x depth:

MK 9064N:
MH 9064:

1 kV IEC/EN 61000-4-18
2.5 kV IEC/EN 61000-4-18

2 kV
IEC/EN 61000-4-4

1 kV IEC/EN 61000-4-5
2 kV IEC/EN 61000-4-5
10 V
IEC/EN 61000-4-6
Limit value class A^{*})
*) The device is designed for the usage under industrial conditions (Class A, EN 55011).
When connected to a low voltage public system (Class B, EN 55011) radio interference can be generated. To avoid this, appropriate measures have to be taken.

IP 40	DIN EN 60529
IP 20	DIN EN 60529

Thermoplastic with VO behaviour according to UL Subject 94
Amplitude 0.35 mm ,
frequency 10 ... 55 Hz IEC/EN 60068-2-6
20 / 060 / 04
EN 60068-1
DIN 46228-1/-2/-3/-4
$1 \times 4 \mathrm{~mm}^{2}$ solid or
$1 \times 2.5 \mathrm{~mm}^{2}$ stranded ferruled (isolated) or $2 \times 1.5 \mathrm{~mm}^{2}$ stranded ferruled (isolated) or $2 \times 2.5 \mathrm{~mm}^{2}$ solid

8 mm
$1 \times 2.5 \mathrm{~mm}^{2}$ solid or
$1 \times 2.5 \mathrm{~mm}^{2}$ stranded ferruled (isolated)
8 mm
$1 \times 4 \mathrm{~mm}^{2}$ solid or
$1 \times 2.5 \mathrm{~mm}^{2}$ stranded ferruled (isolated)
$0.5 \mathrm{~mm}^{2}$
$12 \pm 0.5 \mathrm{~mm}$
Plus-minus terminal screws M3,5 box terminals with wire protection or cage clamp terminals 0.8 Nm

DIN rail
EN 60715
Approx. 140 g
Approx. 250 g

```
22.5 x 90 x 99 mm
    45 x 90 x 99 mm
```


Classification to DIN EN 50155

Vibration and

shock resistance:
Ambient temperature:
Category 1, Class B
IEC/EN 61373
T1 compliant
T2, T3 and TX with operational limitations
Protective coating of the PCB: No

Standard Types

MK 9064N. 11 AC/DC $12 \ldots 300 \mathrm{~V}$ DC 24 V
Article number:
0065254

- Measuring range AC/DC $12 \ldots 300 \mathrm{~V}$
- Auxiliary voltage U_{H} :
- Output: DC 24 V
- Width: 1 changeover contact 22.5 mm

MH 9064.12 AC/DC 24 ... 600 V AC/DC 110 ... 400 V

Article number:

- Measuring range:
- Auxiliary voltage U_{H} :
- Output:
- Width 0065256
AC/DC $24 \ldots 600 \mathrm{~V}$
AC/DC 110 ... 400 V
1 changeover contact (Rel1) and 1 changeover contact (Rel2) 45 mm

Ordering Example

Options with Pluggable Terminal Blocks

Screw terminal
Cage clamp terminal (PS/plugin screw) (PC/plugin cage clamp)

Set Up Procedure

The connection has to be made according to the connection example.

Safety Notes

Dangerous voltage.

Electric shock will result in death or serious injury.

Disconnect all power supplies before servicing equipment.

- Faults must only be removed when the relay is disconnected
- The user has to make sure that the device and corresponding components are installed and wired according to the local rules and law (TUEV, VDE, Health and safety).
- Settings must only be changed by trained staff taking into account the safety regulations. Installation work must only be done when power is disconnected.
- Observe proper grounding of all components

Connection Examples

Notes

Removing the terminal blocks with cage clamp terminals

1. The unit has to be disconnected.
2. Insert a screwdriver in the side recess of the front plate.
3. Turn the screwdriver to the right and left.
4. Please note that the terminal blocks have to be mounted on the belonging plug in terminations.

[^0]: MK 9064N. 11

