Monitoring Technique

VARIMETER Undervoltage Relay BA 9043

Translation of the original instructions

Product Description

The undervoltage relay BA 9043 of the VARIMETER series monitor 3-phase AC networks. The measurement is very simple and without extensive wiring as there is no auxiliary power supply necessary. The adjustment of the setting values is user friendly and done on 2 rotary switches on the front of the device.

Your Advantages

- Preventive maintenance
- · For better productivity
- Quicker fault locating

Features

- According to EC/EN 60255-1
- 3-phase
- For nominal voltage of 3 AC 100 / 57 to 690 / 400 V
- Measures arithmetic mean value
- Adjustable operate and release value
- For 3p3w or 3p4w systems
- De-energized on trip operation
- · LED indicator for operation and state of contact
- · Insensitive to harmonics
- Frequency up to 400 Hz
- · Optionally with adjustable time delay
- Width 45 mm

Approvals and Markings

1) See variants

Function Diagram

Application

- Undervoltage detection in 3 phase systems
- · For industrial and railway applications

Indicators

Red LED: On, when voltage connected

Green LED: On, when output contact activated

Notes

For determination of the arithmetic mean value of the voltage the 3 phases are measured against N.

The variants without N (/001 and /003) measure L1 and L2 against L3. delay the delay is only active at U \geq 0,6 $\rm U_N$. At < 0.4 $\rm U_N$ the relay switches off without delay.

Circuit Diagrams

BA 9043, BA 9043/002

BA 9043/001, BA 9043/003

Connection Terminals

Klemmenbezeichnung	Signalbeschreibung
L1, L2, L3, N	Connection of the monitoring 3-phase system
11, 12, 14	1. changeover contact
21, 22, 24	2. changeover contact

Technical Data

Input

Nominal voltage U,

BA 9043, BA 9043/002: 3/N AC 100/57 V; 220/127 V; 400/230 V

415/240 V; 440/254 V; 500/290 V;

3/N AC 690/400 V

BA 9043/001, BA 9043/003: 3 AC 100 V; 220 V; 400 V; 415 V, 440 V;

500 V: 3 AC 690 V

Max. overload: 1.2 U_N continuously

AC 4 VA Nominal consumption: 50 ... 400 Hz Nominal frequency: Frequency range: ±5% Temperature influence: < 0.05 % / K

Setting Ranges

 $0.85 \dots 1.05 U_N$, infinite variable with Response value:

upper potentiometer

Hysteresis: 0.75 ... 0.95 of operate value

Setting accuracy: ≤±10 %

See diagram switching delay Switching delay t_M: Infinite variable from 0.5 ... 10 sec for Time delay t:

BA 9043/002, BA 9043/003 Between 0.4 and 0.6 U_N the contacts fall back according to the diagram

without additional delay

Output

2 changeover contacts Contacts: Thermal current I,: Continuous current limit curve

(max. 6 A per contact)

Switching capacity

to AC 15 NO contact: 2 A / AC 230 V IEC/EN 60947-5-1 NO contact at 0.1 Hz: 3 A / AC 230 V IEC/EN 60947-5-1 IEC/EN 60947-5-1 NC contact: 1 A / AC 230 V To DC 13: 1 A / DC 24 V IEC/EN 60947-5-1

Electrical life IEC/EN 60947-5-1 at 3 A, AC 230 V $\cos \varphi = 1$: 2 x 105 switching cycles

Short circuit strength

max. fuse rating: 4 A gG/gL IEC/EN 60947-5-1

Mechanical life: > 30 x 10⁶ switching cycles

General Data

Operating mode: Continuous operation

Temperature range

Operation: - 20 ... + 60 °C Storage: - 25 ... + 60 °C Altitude: ≤ 2000 m

Clearance and creepage

Rated impulse voltage /

distances

IEC 60664-1 pollution degree: 6 kV / 2

Overvoltage category: Ш

EMC

Electrostatic discharge: IEC/EN 61000-4-2 8 kV (air)

HF irradiation

80 MHz ... 2.7 GHz: 20 V/m IEC/EN 61000-4-3 Surge voltages

between

IEC/EN 61000-4-5 wires for power supply: 1 kV Between wire and ground: 2 kV IEC/EN 61000-4-5 HF wire guided: 10 V IEC/EN 61000-4-6 Interference suppression: Limit value class B EN 55011

Degree of protection

IP 40 Housing: IEC/EN 60529 Terminals: IP 20 IEC/EN 60529

Thermoplastic with V0 behaviour Housing: according to UL subject 94

Vibration resistance: Amplitude 0.35 mm IEC/EN 60068-2-6

frequency 10 ... 55 Hz

Climate resistance: 20 / 060 / 04 IEC/EN 60068-1

DIN EN 50005 Terminal designation:

Technical Data

Wire connection: DIN 46228-1/-2/-3/-4

2 x 2.5 mm² solid or

2 x 1.5 mm² stranded wire with sleeve Plus-minus terminal screws M3.5 with

self-lifting clamp. piece IEC/EN 60 999-1

Stripping length: 10 mm Fixing torque: 0.8 Nm

IEC/EN 60715 DIN rail Mounting:

Weight: 310 g

Dimensions

Wire fixing:

Width x height x depth: 45 x 73 x 132 mm

CCC-Data

Thermal current I,: 5 A

nfo

Technical data that is not stated in the CCC-Data, can be found in the technical data section.

Classification to DIN EN 50155

Vibration and

shock resistance: Category 1, Class B IEC/EN 61373

Service temperature classes: OT1, compliant

OT2, OT3 and OT4 with operational limitations

Protective coating of the PCB: No

Standard Type

BA 9043 3/N AC 400 / 230 V 50 ... 400 Hz 0039676

Article number:

For 3p4w systems

 Nominal voltage U_N: 3/N AC 400 / 230 V Output: 2 changeover contacts

Width: 45 mm

Variants

BA 9043/001: Without neutral

BA 9043/002: With neutral, adjustable time delay

t = 0.5 ... 10 sec

Without neutral, adjustable time delay BA 9043/003:

t, = 0.5 ... 10 sec

BA 9043: With CCC-approval on request

Ordering example for variants

2 10.03.23 en / 706A

Characteristics

- A = Device free-standing
 B = Device mounted without distance heated by devices with same load.

Continuous current limit curve

Diagram switching delay

Switching delay t_{M} :

When the voltage changes fast on the measuring input, the arithmetic mean $% \left(1\right) =\left(1\right) \left(1\right)$ value can only adjust after a short delay.

Example:

$$F = \frac{U \text{ applied}}{U \text{ setting}}$$

$$F = \frac{240 \text{ V}}{190 \text{ V}} = 1.26$$

U setting = 190 VU applied = 240 V

According to diagram: t_M on = Approx. 800 ms t_{M}^{M} off = Approx. 100 ms

3

E. Dold & Söhne GmbH & Co. KG • D-78120 Furtwangen •	Bregstraße 18 • Phone +49 7723 654-	0 • Fax +49 7723 654356