Translation of the original instructions

Product Description

The voltage relay BA 9054 of the VARIMETER series monitors single phase DC or AC voltage systems. The adjustment is made via potentiometers on the front of the device. Early recognition and preventive maintenance avoid interruptions of electrical plants and provides a higher operational and plant safety.

BA 9054
BA 9054/_ 2 _
Connection Terminals

Terminal designation	Signal description
A1, A2	Auxiliary voltage
e, f	Voltage measuring input
$11,12,14$	1st changeover contact
$21,22,24$	2nd changeover contact

Your Advantages

- Protection against defect by overvoltage
- Preventive maintenance
- For better productivity
- Quicker fault locating
- Precise and reliable

Features

- According to IEC/EN 60255-1, IEC/EN 60947-1
- To: Monitor DC and AC
- With measuring ranges from 15 mV to 1000 V
- High overload possible
- Input frequency up to 5 kHz
- Galvanic separation between Auxiliary Circuit - measuring ciruit
- Auxiliary supply AC and AC/DC
- Optionally with start-up delay
- With time delay, up to max. 100 sec
- Optionally with safe separation to IEC/EN 61140 (on request)
- As option with manual reset
- LED indicators for operation and contact position
- Width: 45 mm

Approvals and Markings

${ }^{1)}$ Approval not for all variants

Applications

- Monitoring voltage in AC or DC systems
- For industrial and railway applications

Function

The relays measure the arithmetic mean value of the rectified measuring voltage. The AC units are adjusted to the r.m.s value. They have settings for response value and hysteresis. The units work as overvoltage relays but can also be used for undervoltage detection. The hysteresis is dependent on the response value.

2 time delays are possible in different variants:
The start up delay t_{a} operates only when connecting the auxiliary supply. The response delay t_{v} is active after exceeding a response value. On overvoltage relays the delay is active when the voltage goes over the tripping value, on undervoltage relays when the voltage drops below the hysteresis value.

Indicators

Green upper LED:
On, when auxiliary supply connected
Yellow lower LED:
On, when output relay acitvated

Function Diagram without Start-up Delay

M6782_k

Version BA 9054/_1_: 2 changeover contacts
Version BA 9054/_20, /_21, /_22, /_23, /_24: 1 changeover contact, measuring range ≥ 70... 700 V
At version BA 9054/6__ with manual reset the contacts remain in the fault state after detecting a fault or after to has elapsed. The contacts are reset by disconnecting the supply voltage.

Technical Data

Input (e, f)

With 1 Measuring range for AC and DC			
Measuring range ${ }^{1)}$		Internal resistance	Max. permissible contin. voltage
AC	DC		
$6 \ldots 60 \mathrm{mV}^{3 / 4) 5}$	$5.4 \ldots 54 \mathrm{mV}^{3 / 4) 5}$	$20 \mathrm{k} \Omega$	10 V
$15 . .150 \mathrm{mV}{ }^{3)} 4{ }^{4}$	$13.5 \ldots 135 \mathrm{mV}^{3 / 4)}$	$40 \mathrm{k} \Omega$	100 V
$50 \ldots 500 \mathrm{mV}{ }^{3)}$	$45 . .450 \mathrm{mV}{ }^{3)}$	$270 \mathrm{k} \Omega$	250 V
$0.5 \ldots 5 \mathrm{~V}$	0.45 ... 4.5 V	$500 \mathrm{k} \Omega$	300 V
$1 . .10 \mathrm{~V}$	0.9 ... 9.0 V	$1 \mathrm{M} \Omega$	300 V
5 ... 50 V	4.5 .. 45 V	$2 \mathrm{M} \Omega$	500 V
$25 . .250 \mathrm{~V}$	22.5 ... 225 V	$2 \mathrm{M} \Omega$	500 V
50 ... 500 V	45 ... 450 V	$2 \mathrm{M} \Omega$	500 V
$70 . .700 V^{2)}$	$63 . . .630 \mathrm{~V}^{2)}$	$3 \mathrm{M} \Omega$	1000 V
$100 \ldots 1000 \mathrm{~V}^{2)}$	$90 \ldots 900 \mathrm{~V}^{2)}$	$3 \mathrm{M} \Omega$	1000 V

${ }^{1}$) DC or AC voltage $50 \ldots 5000 \mathrm{~Hz}$
(Other frequency ranges of $10 \ldots 5000 \mathrm{~Hz}$, e.g. $162 / 3 \mathrm{~Hz}$ on request)
${ }^{2}$) Only with BA 9054/_20; /_21; /_22; /_23; /_24
(Version: 1 changeover contact)
${ }^{3)}$ To avoid measuring mistakes, twisted/shielded wires must always be used at the measuring input for device versions with an mV measuring range.
${ }^{4}$) Using only for current sensing via shunt!
${ }^{5)}$ Measuring ranges $6 \ldots 60 \mathrm{mV}$ (only available at variant BA 9054/08_).

Please note:

- ≤ 600 V: Overvoltage category III
- > 600 V : Overvoltage category II

Measuring principle:
Adjustment:

Temperature influence:

Setting Ranges

Setting
Response value:
Hysteresis
at AC:
at DC:
Accuracy:
Response value at
Potentiometer right stop (max): 0 ... + 8 \%
Potentiometer left stop (min): $\quad-10 \ldots+8 \%$
Repeat accuracy
(constant parameter)
Recovery time
at devices with manual reset
(Reset by braking
of the auxiliary voltage)
BA 9054/6

Time delay t_{v} :

Start-up delay t_{a} :
BA 9054/1 _ relative scale
$\leq \pm 0.5 \%$

$\leq 1 \mathrm{~s}$
$0 \ldots 100 \mathrm{~s}, 0 \ldots 300 \mathrm{~s}$

Arithmetic mean value
The AC-devices can also monitor DCvoltage. The scale offset in this case is ($\overline{\mathrm{U}}=0.90 \mathrm{U}_{\text {eff }}$)
$<0.05 \% / K^{\text {e }}$

Infinite variable $0.1 \mathrm{U}_{\mathrm{N}} \ldots 1 \mathrm{U}_{\mathrm{N}}$

Infinite variable $0.5 \ldots 0.98$ of setting value Infinite variable $0.5 \ldots 0.96$ of setting value
(dependent to function and auxiliary voltage)
Infinite variable at logarithmic scale
from $0 \ldots 20 \mathrm{~s}, 0 \ldots 30 \mathrm{~s}, 0 \ldots 60 \mathrm{~s}$,
setting $0 \mathrm{~s}=$ without time delay
$1 \ldots 20 \mathrm{~s}, 1 \ldots 30 \mathrm{~s}, 1 \ldots 60 \mathrm{~s}, 1 \ldots 100 \mathrm{~s}$, adjustable on logarithmic scale. t_{a} is started when the supply voltage is connected. During elapse of time the output contact is in good state

Auxiliary voltage $\mathrm{U}_{\mathrm{H}}(\mathrm{A} 1, \mathrm{~A} 2)$

Nominal voltage	Voltage range	Frequency range
AC/DC $24 \ldots 80 \mathrm{~V}$	AC $18 \ldots 100 \mathrm{~V}$	$45 \ldots 400 \mathrm{~Hz} ; \mathrm{DC} 48 \% \mathrm{~W}$
	DC $18 \ldots 130 \mathrm{~V}$	$\mathrm{~W} \leq 5 \%$
AC/DC $80 \ldots 230 \mathrm{~V}$	AC $40 \ldots 265 \mathrm{~V}$	$45 \ldots 400 \mathrm{~Hz} ; \mathrm{DC} 48 \% \mathrm{~W}$
	DC $40 \ldots 300 \mathrm{~V}$	$\mathrm{~W} \leq 5 \%$
Nominal voltage	Voltage range	Frequency range
DC 12 V	DC $10 \ldots 18 \mathrm{~V}$	battery voltage

Nominal consumption:
$4 \mathrm{VA} ; 1.5 \mathrm{~W}$ at AC 230 V Rel. energized 1 W at DC 80 V Rel. energized

Technical Data

Auxiliary voltage $\mathbf{U}_{\mathrm{H}}(\mathrm{A} 1, \mathrm{~A} 2)$ for mono voltages

General Data

Operating mode:
Temperature range:
Operation:

Storage:
Altitude:
Clearance and creepage
distances
Overvoltage category
Measuring voltage
$\leq 600 \mathrm{~V}$:
III
$>600 \mathrm{~V}$:
II
Rated impulse voltage /
pollution degree
Aux. voltage / measuring input: $6 \mathrm{kV} / 2 \quad$ IEC 60664-1
Auxiliary voltage / contacts: 6 kV / 2 IEC 60664-1
Measuring input / contacts: 6 kV / 2 IEC 60664-1
Contacts 11,12,14 / 21, 22, 24: 4 kV / 2 IEC 60664-1
EMC
Electrostatic discharge:
8 kV (air)
$20 \mathrm{~V} / \mathrm{m} \quad$ IEC/EN 61000-4-3
80 MHz ... 1 GHz :
1 GHz ... 2.7 GHz :
Fast transients:
Surge voltages
between
wires for power supply:
Between wire and ground:
HF wire guided:
Interference suppression:
Degree of protection
Housing:
Terminals:
Housing:
Vibration resistance:
Climate resistance:
Terminal designation:
Wire connection:

Wire fixing:

Stripping length:
Fixing torque:
Mounting:
Weight
AC-device:
AC/DC-device:

Dimensions

Width x height x depth:
$45 \times 75 \times 120 \mathrm{~mm}$

Classification to DIN EN 50155

Vibration and
shock resistance:
Category 1, Class B
IEC/EN 61373
Service temperature classes: OT1, OT2 compliant OT3 and OT4 with operational limitations Protective coating of the PCB: No

CCC-Data		
Thermal current $\mathrm{I}_{\mathrm{th}}:$	5 A	
Switching capacity to AC 15: $2 \mathrm{~A} / \mathrm{AC} \mathrm{230} \mathrm{V}$ IEC/EN 60947-5-1 To DC 13: $1 \mathrm{~A} / \mathrm{DC} \mathrm{24V}$ IEC/EN 60947-5-1		

Technical data that is not stated in the CCC-Data, can be found in the technical data section.

Standard Types

BA 9054/010 AC 25 ... 250 V AC/DC 80 ... 230 V
Article number:
0053642

- For Overvoltage monitoring
- Measuring range:

AC 25 ... 250 V

- Auxiliary voltage U_{H} :

AC/DC 80 ... 230 V

- Time delay t_{v} by $U_{a n}$

Width:
45 mm
BA 9054/012 AC $25 \ldots 250 \mathrm{~V}$ AC/DC $80 \ldots 230 \mathrm{~V}$
Article number:
0053714

- For Undervoltage monitoring
- Measuring range:

AC 25 ... 250 V

- Auxiliary voltage U_{H} :

AC/DC 80 ... 230 V

- Time delay t_{v} by U_{ab} : $0 \ldots 20 \mathrm{~s}$
- Width:

45 mm

Varianten

BA 9054/820: AC 70 ... 700 V AC/DC 80 ... 230 V
article number: 0069637
like BA 9054/020,
Temperature range
Operation: - $40 \ldots+60^{\circ} \mathrm{C}$
Operation: $-40 \ldots+70^{\circ}{ }^{\circ} \mathrm{C}$
(OT4 according to DIN EN 50155 with the following restrictions)
*) - Device mounted
Measuring voltage at e/f max. AC/DC 300 V
Auxiliary voltage at A1(+)/A2 max. DC 110 V
Overvoltages only temporary
Contact current max. AC 5 A

- Device mounted

Measuring voltage at e/f max. AC/DC 700 V ;
Auxiliary voltage at A1(+)/A2 max. AC $110 \mathrm{~V} / \mathrm{DC} 130 \mathrm{~V}$
Overvoltages only temporary
Contact current max. AC 1 A

- Device mounted with 1 cm distance

Measuring voltage at e/f max. AC/DC 300 V ;
Auxiliary voltage at $\mathrm{A} 1(+) / \mathrm{A} 2$ max. DC 110 V
Overvoltages only temporary
Contact current max. AC 2 A

Ordering Example for Variants

11 Overvoltage relay de-energized on trip time delay at setting value
12 Undervoltage relay energized on trip time delay at hysteresis value Same as BA 9054/024 but with additional moisture protection
21 Same as BA 9054/011 overloadable up to AC/DC 1000 V $1 \mathrm{C} / \mathrm{O}$ contact
22 Same as BA 9054/012, overloadable up to AC/DC 1000 V $1 \mathrm{C} / \mathrm{O}$ contact
23 Same as BA 9054/013 overloadable up to AC/DC 1000 V $1 \mathrm{C} / \mathrm{O}$ contact
24 Same as BA 9054/010, overloadable up to AC/DC 1000 V, $1 \mathrm{C} / \mathrm{O}$ contact
32 Same as BA 9054/022 with $4 \times$ AC/DC 500 V input resistances in series
46 Same as BA 9054/010, reduced reactiontime, measuring range DC $24 \ldots 35 \mathrm{~V}$, it is necessary to connect power supply before measuring voltage
47 Same as 46, but with measuring range DC 60 ... 78 V

Standard version
1 With start up delay t_{a}
2 With safe electrical separation of input- and output circuit accroding to DIN 61140 (on req.)
6 With manual reset, resetting by disconnecting the power supply

Setting

Example:

Voltage relay AC 25 ... 250 V
AC according to type plate:
i.e. the unit is adjusted to AC voltage
$25 . .250 \mathrm{~V}=$ Measuring range
Response value AC 150 V
Hysteresis AC 75 V
Settings
upper potentiometer:
0.6
$(0.6 \times 250 \mathrm{~V}=150 \mathrm{~V})$
Lower potentiometer:

$$
0.5
$$

$$
(0.5 \times 150 \mathrm{~V}=75 \mathrm{~V})
$$

The AC-devices can also monitor DC voltage. The scale offset in this case is: $\bar{U}=0.9 \times \mathrm{U}_{\text {eff. }}$

AC $25 \ldots 250 \mathrm{~V}$ is equivalent to $\mathrm{DC} 22.5 \ldots 225 \mathrm{~V}$
Response value DC 150 V
Hysteresis DC 75 V

Settings

upper potentiometer: $\quad 0.66 \quad(0.66 \times 225 \mathrm{~V}=150 \mathrm{~V})$
Lower potentiometer: $\quad 0.5 \quad(0.5 \times 150 \mathrm{~V}=75 \mathrm{~V})$

Characteristic

Time delay of measuring circuit

X on: Measured value rises

$$
F=\frac{\text { Meas. value (after rise of meas. value) }}{\text { Setting value }}
$$

X off: Measured value drops $F=\frac{\text { Meas. value (befor meas. value drops) }}{\text { Setting value (hysteresis) }}$
The diagram shows the typical delay of a standard devices depending on the measured values " X on and X off" at sudden rise or drop of the signal. At slow change of the measured value the delay is shorter.
The total reaction time of the device results from the adjustable delay t_{v} and the delay created by the measuring circuit.

The diagram shows an average delay. The delay times could differ on the different variants.

Example for "X on" (overvoltage detection with BA 9054/010):

Adjusted setting value X on $=230 \mathrm{~V}$.
Caused by a missing neutral the voltage rises suddenly to 400 V
$F=\frac{\text { Measured value (after rise of meas. value) }}{\text { Setting value }}=\frac{400 \mathrm{~V}}{230 \mathrm{~V}}=1.74$
Reading from the diagram:
The output relay switches on after 64 ms at a setting $\mathrm{t}_{\mathrm{v}}=0$.

Example for "X off" (undervoltage detection with BA 9054/012):

Adjusted hysteresis setting value is 100 V .
Caused by a broken wire the voltage drops suddenly from 230 V to 0 V .
$F=\frac{\text { Measured value (befor meas. value drops) }}{\text { Setting value (hysteresis) }}=\frac{230 \mathrm{~V}}{100 \mathrm{~V}}=2.3$
Reading from the diagram:
The output relay switches off after 70 ms at a setting $\mathrm{t}_{\mathrm{v}}=0$.

